Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Inorg Biochem ; 247: 112305, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37441924

RESUMO

Zinc(II) ions play critical roles in all known life as structurally important stabilizing ions in proteins, catalytically active metals in enzymes, and signaling agents impacting physiological changes. To maintain homeostasis, the intracellular concentration of zinc(II) is strictly controlled by a family of metal-regulatory proteins in both prokaryotic and eukaryotic organisms. In S. pneumoniae, there are two proteins that share responsibility for Zn2+ homeostasis, one of them is the Adhesin Competence Repressor (AdcR) and it binds to a specific double-stranded DNA binding domain (dsDNA). AdcR has been structurally characterized containing two zinc(II) metal centers per monomeric unit. Here we report data collected from differential scanning calorimetry (DSC) experiments aimed to measure the structural stability of AdcR, the fully complimented Zn2AdcR complex, and the protein/DNA complex Zn2AdcR/dsDNA. Thermograms collected from DSC experiments yielded endothermic unfolding events for AdcR, Zn2AdcR, and Zn2AdcR/dsDNA complex at 55.6, 70.2, and 56.6 °C, respectively. A non-two state unfolding model best fits the data, giving ΔH terms associated with these thermal unfolding events of 5.1, 7.1, and 4.9 kcal/mol. These data allow for the development of a thermodynamic cycle connecting both zinc(II) and DNA binding to AdcR. Furthermore, pairing this newly reported data with known association constants for zinc(II) and DNA binding allowed for the generation of thermodynamic profiles for both zinc(II) binding to AdcR and Zn2AdcR binding to DNA, which show both are decisively entropy-driven processes.


Assuntos
DNA , Zinco , Zinco/química , DNA/metabolismo , Adesinas Bacterianas , Ligação Proteica , Streptococcus pneumoniae/química , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/metabolismo , Termodinâmica , Varredura Diferencial de Calorimetria
2.
Methods Mol Biol ; 2526: 161-179, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35657519

RESUMO

Proteins can be covalently modified by a broad range of highly reactive chemicals and redox mechanisms. Reversible redox-mediated post-translational modifications of sensitive cysteine thiol groups in proteins impact protein characteristics such as interaction behavior and activity state. Evaluating the response of proteins to redox perturbation or reactive chemical species is critical for understanding the underlying mechanisms involved and their contribution to plant stress physiology. Here we provide a detailed workflow that includes procedures for (i) purification, processing, and analysis of protein samples with redox agents, (ii) determining redox-modulated monomer to oligomer transitions using size exclusion chromatography, and (iii) activity assays for monitoring the impact of redox agents on purified enzymes and in crude extracts from plants subjected to oxidative stress. We exemplified how to apply several of the methods discussed for analyzing redox-sensing metallopeptidases, such as thimet oligopeptidases. We anticipate that these protocols should find broad applications in monitoring biochemical properties of other classes of redox-sensitive plant proteins.


Assuntos
Cisteína , Proteínas de Plantas , Cisteína/química , Oxirredução , Estresse Oxidativo , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Processamento de Proteína Pós-Traducional , Espécies Reativas de Oxigênio/metabolismo
3.
J Biol Chem ; 296: 100695, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33894200

RESUMO

Upon pathogen infection, receptors in plants will activate a localized immune response, the effector-triggered immunity (ETI), and a systemic immune response, the systemic acquired response (SAR). Infection also induces oscillations in the redox environment of plant cells, triggering response mechanisms involving sensitive cysteine residues that subsequently alter protein function. Arabidopsis thaliana thimet oligopeptidases TOP1 and TOP2 are required for plant defense against pathogens and the oxidative stress response. Herein, we evaluated the biochemical attributes of TOP isoforms to determine their redox sensitivity using ex vivo Escherichia coli cultures and recombinant proteins. Moreover, we explored the link between their redox regulation and plant immunity in wild-type and mutant Arabidopsis lines. These analyses revealed that redox regulation of TOPs occurs through two mechanisms: (1) oxidative dimerization of full-length TOP1 via intermolecular disulfides engaging cysteines in the N-terminal signal peptide, and (2) oxidative activation of all TOPs via cysteines that are unique and conserved. Further, we detected increased TOP activity in wild-type plants undergoing ETI or SAR following inoculation with Pseudomonas syringae strains. Mutants unable to express the chloroplast NADPH-dependent thioredoxin reductase C (NTRC) showed elevated TOP activity under unstressed conditions and were SAR-incompetent. A top1top2 knockout mutant challenged with P. syringae exhibited misregulation of ROS-induced gene expression in pathogen-inoculated and distal tissues. Furthermore, TOP1 and TOP2 could cleave a peptide derived from the immune component ROC1 with distinct efficiencies at common and specific sites. We propose that Arabidopsis TOPs are thiol-regulated peptidases active in redox-mediated signaling of local and systemic immunity.


Assuntos
Arabidopsis/enzimologia , Arabidopsis/imunologia , Metaloendopeptidases/metabolismo , Arabidopsis/citologia , Arabidopsis/microbiologia , Metaloendopeptidases/química , Metaloendopeptidases/genética , Modelos Moleculares , Mutação , Oxirredução , Conformação Proteica , Sinais Direcionadores de Proteínas , Pseudomonas syringae/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
4.
Plant J ; 106(2): 336-350, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33481299

RESUMO

Protein homeostasis (proteostasis) is crucial for proper cellular function, including the production of peptides with biological functions through controlled proteolysis. Proteostasis has roles in maintenance of cellular functions and plant interactions with the environment under physiological conditions. Plant stress continues to reduce agricultural yields causing substantial economic losses; thus, it is critical to understand how plants perceive stress signals to elicit responses for survival. As previously shown in Arabidopsis thaliana, thimet oligopeptidases (TOPs) TOP1 (also referred to as organellar oligopeptidase) and TOP2 (also referred to as cytosolic oligopeptidase) are essential components in plant response to pathogens, but further characterization of TOPs and their peptide substrates is required to understand their contributions to stress perception and defense signaling. Herein, label-free peptidomics via liquid chromatography-tandem mass spectrometry was used to differentially quantify 1111 peptides, originating from 369 proteins, between the Arabidopsis Col-0 wild type and top1top2 knock-out mutant. This revealed 350 peptides as significantly more abundant in the mutant, representing accumulation of these potential TOP substrates. Ten direct substrates were validated using in vitro enzyme assays with recombinant TOPs and synthetic candidate peptides. These TOP substrates are derived from proteins involved in photosynthesis, glycolysis, protein folding, biogenesis, and antioxidant defense, implicating TOP involvement in processes aside from defense signaling. Sequence motif analysis revealed TOP cleavage preference for non-polar residues in the positions surrounding the cleavage site. Identification of these substrates provides a framework for TOP signaling networks, through which the interplay between proteolytic pathways and defense signaling can be further characterized.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/metabolismo , Metaloendopeptidases/fisiologia , Proteólise , Arabidopsis/enzimologia , Arabidopsis/fisiologia , Proteínas de Arabidopsis/metabolismo , Metaloendopeptidases/metabolismo
5.
Methods Mol Biol ; 2139: 309-324, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32462596

RESUMO

The complexity in chemical composition alongside the genomic complexity of crop plants poses significant challenges for the characterization of their proteomes. This chapter provides specific methods that can be used for the extraction and identification of proteins from sweet potato, and a proteogenomic method for the subsequent peptide mapping on the haplotype-derived sweet potato genome assembly. We outline two basic methods for extracting proteins expressed in root and leaf tissues for the label-free quantitative proteomics-one phenol-based procedure and one polyethylene glycol (PEG) 4000-based fractionation method-and discuss strategies for the organ-specific protein extraction and increased recovery of low-abundance proteins. Next, we describe computational methods for improved proteome annotation of sweet potato based on aggregated genomics and transcriptomics resources available in our and public databases. Lastly, we describe an easily customizable proteogenomics approach for mapping sweet potato peptides back to their genome location and exemplify its use in improving genome annotations using a mass spectrometry data set.


Assuntos
Genoma de Planta/genética , Ipomoea batatas/genética , Proteogenômica/métodos , Biologia Computacional/métodos , Genômica/métodos , Espectrometria de Massas/métodos , Mapeamento de Peptídeos/métodos , Folhas de Planta/genética , Raízes de Plantas/genética , Proteoma/genética , Proteômica/métodos , Transcriptoma/genética
6.
J Proteome Res ; 18(7): 2719-2734, 2019 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-31117636

RESUMO

Two complementary protein extraction methodologies coupled with an automated proteomic platform were employed to analyze tissue-specific proteomes and characterize biological and metabolic processes in sweetpotato. A total of 74 255 peptides corresponding to 4321 nonredundant proteins were successfully identified. Data were compared to predicted protein accessions for Ipomoea species and mapped on the sweetpotato transcriptome and haplotype-resolved genome. The two methodologies exhibited differences in the number and class of the unique proteins extracted. Overall, 39 916 peptides mapped to 3143 unique proteins in leaves, and 34 339 peptides mapped to 2928 unique proteins in roots. Primary metabolism and protein translation processes were enriched in leaves, whereas genetic pathways associated with protein folding, transport, sorting, as well as pathways in the primary carbohydrate metabolism were enriched in storage roots. A proteogenomics analysis successfully mapped 90.4% of the total uniquely identified peptides against the sweetpotato transcriptome and genome, predicted 741 new protein-coding genes, and specified 2056 loci where gene annotations can be further improved. The proteogenomics results provide evidence for the translation of new open reading frames (ORFs), alternative ORFs, exon extensions, and intronic ORF sequences. Data are available via ProteomeXchange with identifier PXD012999.


Assuntos
Ipomoea batatas/química , Folhas de Planta/química , Raízes de Plantas/química , Proteogenômica/métodos , Proteômica/métodos , Perfilação da Expressão Gênica , Genoma de Planta/genética , Ipomoea batatas/genética , Fases de Leitura Aberta/genética , Transcriptoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...